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Purpose: The currently available drug repertoire against lymphatic filariasis, a major health 

hazard in the developing world, is inadequate and is fraught with serious limitations. Thus, the 

development of an effective antifilarial strategy has become a global research thrust mandated 

by the World Health Organization. Nanoparticles of silver endowed with antibacterial potency 

are known to induce apoptosis in eukaryotic cells. The present study was designed to investi-

gate the possible microfilaricidal efficacy of silver nanoparticles and to establish the validity 

of apoptotic rationale in antifilarial drug designing.

Methods: This report analyzed the effect of nanoparticles of silver as well as gold (size range: 

10–15 nm) on the microfilariae of Brugia malayi obtained from the lavage of peritoneal cavities 

of infected jirds (Meriones unguiculatus). The study included a microfilarial motility assay, 

a trypan blue exclusion test, a poly(adenosine diphosphate-ribose) polymerase activity study, 

ethidium bromide/acridine orange differential staining, and transmission, as well as scanning 

electron microscopic evaluation of ultrastructural changes in microfilariae.

Results: The study demonstrates that nanoparticles of silver, but not of gold, elicited signifi-

cant loss in microfilarial motility. Differential staining of parasites with ethidium bromide 

and acridine orange, poly(adenosine diphosphate-ribose) polymerase activity in microfilarial 

lysate, and electron microscopic findings underscored apoptotic death of parasites attribut-

able to nanosilver. In a trypan blue exclusion test, the 50% lethal dose of nanosilver was 

measured to be 101.2 µM, which was higher than the recorded complete inhibitory concen-

tration value (50.6 µM), thus supporting nanosilver as a potential drug candidate against 

lymphatic filariasis.

Conclusion: The present report provides the first ever conclusive proof in support of apoptosis 

as a novel stratagem in antifilarial drug designing and nanoscale silver as a valid lead in research 

on antifilarial therapeutics. The main embargo about the current drug diethylcarbamazine citrate 

is its empirical use without rationale. Effective microfilaricidal activity of nanosilver at rela-

tively low concentrations as reported in this study, with evidence of the induction of apoptosis 

in microfilariae, projects nanosilver as a potential drug adjuvant against lymphatic filariasis. 

The much higher 50% lethal dose value of nanosilver compared to the complete inhibitory 

concentration value reported in this study argues in favor of a safe therapeutic window of this 

agent in its antifilarial efficacy.

Keywords: silver nanoparticles, apoptosis, lymphatic filariasis, microfilaricidal agent, parasitic 

diseases

Introduction
Human lymphatic filariasis is a major vector-borne disease in countries of tropical 

and subtropical regions caused by the nematode parasites Wuchereria bancrofti and 
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Brugia malayi. The adult forms of the parasites harbor in 

host lymphatic tissue, whereas the microfilarial forms (Mf) 

circulate in the blood as a reproductive product. The latter are 

transmitted to the mosquito vector where the larval (infective) 

stage is generated. Passage of infective larvae into humans 

and subsequent development into adult worms complete the 

life cycle. The disease has varied presentations depending 

on the host immune status. Despite accelerated research 

to develop an effective therapeutic regimen against the 

disease, the antifilarial drug inventory still remains limited to 

diethylcarbamazine citrate (DEC).1 Since last century, DEC 

has been almost the sole antifilarial drug, and its inherent 

disadvantages such as unwanted side effects, lack of patient 

compliance, and poor macrofilaricidal effectiveness2 have 

warranted research on new antifilarial drug development. 

The World Health Organization has placed special emphasis 

on the development of novel drugs against human lymphatic 

filariasis, realizing the severe socioeconomic and emotional 

burden of this disease on developing nations.3 An estimated 

populace of approximately 120 million clinical cases of 

lymphatic filariasis, with another 751 million people living 

in endemic areas, are bare statistics of this harsh fact.4 

According to the Indian Council of Medical Research, more 

than 550 million people are exposed to filarial infection in 

India, which is estimated to be 40% of the total global burden 

of the disease.5

The natural response of the host to the microbial pathogen 

is inflammation.6 Oxidative stress is a major contributing 

factor to innate immunity,7 and hence generation of 

a pro-oxidant state provides a premise for antif ilarial 

drug development. The authors have earlier reported 

potential antifilarial properties of traditional therapeutic 

herbal extracts composed of polyphenolics8 and synthetic 

inhibitors of dihydrofolate reductase.9 Nanoparticles of 

silver (AgNPs) endowed with antibacterial potency10,11 

induced p53 expression and apoptosis in eukaryotic 

cells.12,13 Strikingly, free radical generation has been 

implicated in the apoptosis induced by AgNPs.14–16 DEC 

was also shown to induce microfilarial apoptosis.17 DEC 

acts in an innate response-mimetic manner by recruitment of 

macrophages and by invoking proinflammatory status.6 The 

importance of apoptosis in the host–parasite relationship 

is not itself a unique concept;18 however, it has never been 

explored as an antifilarial therapeutic strategy. With this 

perspective, the present study was designed to investigate 

the possible microfilaricidal efficacy of AgNPs and to 

establish the validity of apoptotic rationale in antifilarial 

drug designing.

Materials and methods
Synthesis and characterization  
of biocompatible nanoparticles
AgNPs were synthesized following the procedure described 

in earlier reports.11,19,20 In short, 0.017 g silver nitrate was 

dissolved in deionized water along with sodium hydroxide 

(0.01 M) and liquid ammonia (2%) to form a 0.01 M solution of 

stable soluble complex of silver ions. D-glucose and hydrazine 

(each at 0.01 M concentration) were added to the solution of 

silver ions to ensure its complete reduction at a final concentra-

tion of 0.005 M. The pH of the solution was adjusted to 7.4 with 

citric acid. The final solutions were carefully stored in glass 

vials at 4°C for further characterization. The size, morphology, 

and distribution of AgNPs were characterized using a trans-

mission electron microscope (Tecnai 12; Philips, Eindhoven, 

the Netherlands) and an ultraviolet–visible spectrophotometer 

(GE Life Sciences, Uppsala, Sweden). Nanoparticles were 

found to be spherical in shape with average size of 10–15 nm 

(Figure 1). Before each experiment, the solution containing 

the nanoparticles was sonicated (Labsonic® 2000; B Braun 

Melsungen AG, Melsungen, Germany) for about 2 minutes and 

passed through filters of 0.2 µm pore size (Sartorius Stedim 

Biotech, Gottingen, Germany). Gold nanoparticles (AuNPs) 

(G1527; 10 nm diameter) were procured from Sigma-Aldrich 

Corporation (Bangalore, India).

Collection and preparation  
of B. malayi microfilariae
Microfilariae of B. malayi were obtained by lavage from the 

peritoneal cavities of infected jirds (Meriones unguiculatus). 

The Mf used for in vitro experiments were collected, washed 

with Roswell Park Memorial Institute (RPMI) 1640 medium 

supplemented with antibiotics (gentamicin 20 mg; penicillin 

100 mg; streptomycin 100 mg), 15 mM 4-(2-hydroxyethyl)-

1-piperazineethanesulfonic acid, organic acids (malic acid, 

α-ketoglutaric acid, D-succinic acid, and fumaric acid at 

concentrations of 670, 370, 60, and 55 mg/L, respectively) 

and sugars (sucrose and fructose at concentrations of 26.7 g/L 

and 0.4 g/L, respectively). The use of animals for the study 

was approved by the Institutional Animal Ethics Committee 

which follows the Committee for the Purpose of Control and 

Supervision of Experiments on Animals norms.

In vitro screening for antifilarial activity 
against B. malayi
In vitro screening for antifilarial activity against B. malayi 

was carried out as described earlier.8 Approximately 100 Mf 
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(in 100 µL RPMI) were introduced into each well of 24-well 

microculture plates. B. malayi microfilariae were screened for 

the antifilarial effect of AgNPs in vitro over a wide dose range 

(1–100 µM). Microfilariae were treated similarly with AuNPs 

of comparable sizes to rule out any nonspecific nanoparticle 

effect. As a positive control, staurosporine – a known inducer 

of apoptosis – was added to the microfilariae at 0.5 µM (elicits 

100% loss in motility), whereas Mf in RPMI medium, in the 

absence of any agent added, was used as a negative control 

(vehicle). The plates were incubated for 48 hours at 37°C 

in the presence of 5% carbon dioxide. Subsequently, the 

number of live and dead Mf in each well was counted under 

an inverted microscope (Nikon Corporation, Tokyo, Japan) 

and the percentage of motile Mf out of total Mf recruited per 

aliquot was calculated.

Determination of 50% lethal  
dose for nanosilver
Cytotoxicity of AgNPs was evaluated by a trypan blue 

dye exclusion assay. Peripheral blood mononuclear cells 

(1 × 105 cells/mL) were exposed to varying concentrations 

of AgNPs for 48 hours followed by incubation with trypan 

blue (0.2 mg/mL) for 1 minute. Cells were observed under 

a Nikon light microscope (Tokyo, Japan) and the viable cell 

ratio were calculated by counting the stained and unstained 

cells separately.21 Viable cells do not uptake trypan blue, 

whereas nonviable cells with porous membranes stain blue. 

The cytotoxicity of the nanoparticles was evaluated and the 

50% lethal dose was determined.

Poly(adenosine diphosphate-ribose) 
polymerase (PARP) activity assay
PARP activity in B. malayi microfilariae was determined 

using a commercial kit (R & D Systems Inc, Minneapolis, 

MD) according to the manufacturer’s instruction. Briefly, 

100 µL aliquots of suspension (containing about 100 Mf) 

were treated with different reagents and lysed with 1% 

Triton X-100 (Himedia laboratories Pvt Ltd, Mumbai, India) 

in the presence of protease inhibitors. Lysate (20 µg) was 

added to each well in 96-well plates precoated with  histone. 

300 350 400 450 500 550 600 650 700

0

0.5

1

1.5

2

2.5

3

3.5

4
2

2

1

1

B

Wavelength (nm)

Particle size (nm)

P
er

ce
n

ta
g

e 
o

f 
p

ar
ti

cl
es

 (
%

)

A
b

so
rb

an
ce

 (
au

)

0
0

5

5

10

10

15

15

20

20

25

25

35

30

30

5 nm

50 nm

A

DC

Figure 1 Characterization of silver nanoparticles. (A) Silver nanoparticles showing spherical, monodispersed particles (scale bar, 50 nm). The inset shows one single particle 
of silver (scale bar, 5 nm). (B) Particle size distribution showing preponderance of particles in the size range of 10–15 nm. (C) Electron diffraction pattern of nanoparticles 
showing various crystallographic planes. (D) Optical spectra of silver before (1) and after reduction (2). The inset shows the corresponding change in color.
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PARP activity was determined from the  incorporation 

of biotinylated poly(adenosine diphosphate-ribose) onto 

immobilized histone, which was measured by the addition of 

steptavidin-conjugated horseradish peroxidise and a suitable 

chromogenic substrate to the incubation mixture. A standard 

curve for PARP enzymatic activity (A
450

 versus PARP units) 

was initially generated using 0.01, 0.05, 0.1, 0.5, and 1 unit 

of enzyme per well. The absorbance obtained with each test 

sample (microfilarial lysate) was extrapolated on the standard 

curve to obtain the corresponding PARP activity. The control 

sample (microfilaria without any pretreatment) provided 

100% activity reference point. The percentage inhibition 

in enzymatic activity in other test samples (lysates treated 

with different reagents) was accordingly calculated. The 

experiment was carried out in triplicate and the percentage 

inhibition was averaged over the experiments.

Ethidium bromide/Acridine orange  
(EB/AO) staining for the detection  
of apoptosis
Dual staining with EB/AO was carried out as described 

 elsewhere.22 The dye mix consisted of 100 µg/mL EB and 

100 µg/mL AO in phosphate-buffered saline.  Microfilariae 

(control as well as treated with different reagents for 48 hours) 

were washed and resuspended in 25 µL cold phosphate-buffered 

saline, followed by the addition of 5 µL EB/AO dye mix. 

Stained microfilariae were viewed under an epifluorescence 

microscope (Nikon) with the excitation filter set at 480/30 nm 

and the barrier filter at 535/40 nm. Tests were carried out in trip-

licate, counting a minimum of 10 Mf in each observation.

Electron microscopy
Mf were treated with staurosporine, AgNPs, or AuNPs 

for 48 hours. Samples were fixed in Karnovsky fixative 

(pH 7.2) for 2 hours at 4°C followed by postfixation in 

osmium  tetroxide (1%) and then dehydrated in ascending 

concentrations of acetone. For scanning electron microscopy, 

dehydrated samples were critical point dried, mounted on an 

aluminum stub with adhesive tape, and sputter-coated with 

 colloidal gold. Specimens were viewed under a Leo 435VP 

 scanning electron microscope (LEO Electron Microscopy 

Ltd, Cambridge, UK) at an operating voltage of 15 kV. For 

transmission electron microscopy, blocks were prepared as 

previously described.23 Ultrathin sections (60–70 nm thick) 

were prepared with an ultramicrotome (Leica EM UC6; 

Leica Microsystems GmbH, Wetzlar, Germany). Sections 

were contrasted with uranyl acetate and alkaline lead  citrate. 

Specimens were mounted on formvar-coated grids and 

viewed under a FEI Morgagni™ 268(D) (FEI, Hillsboro, 

OR) digital transmission electron microscope at 120 kV using 

image analysis software from Soft Imaging System GmbH 

(Muenster, Germany). The final magnifications were derived 

from the photo micrographs and the scale bars determined.

Results and discussion
AgNPs were synthesized through the aqueous chemical 

 precipitation method, as described earlier.11,19,20 Nanoparticles 

were spherical in shape, 10–15 nm in diameter (Figure 1A), 

and monodispersed with a narrow particle size distribution 

(Figure 1B). The selected area electron diffraction pattern 

from these particles matched the crystallographic planes 

of the face-centered cubic AgNPs (Figure 1C). Ultraviolet–

visible absorption spectra showed the reduction of silver ions 

into the AgNPs under ambient conditions (Figure 1D). The 

inset shows the color changes before and after the process 

of reduction. The silver nitrate solution exhibited maximum 

absorbance at 300 nm, which gradually underwent red shift 

with the appearance of a sharp peak at 410 nm, which can 

be attributed to a narrow size distribution of the particles 

formed in the solution.

The microfilariae remained viable and motile in RPMI 

media, as expected. The effect of AgNPs (10–15 nm) upon 

Mf motility was evaluated over a wide concentration range. 

Remarkably, at 4.6 µM, the AgNPs evoked motility loss in 

50% of Mf population, whereas at 50.6 µM, the AgNPs ren-

dered the entire Mf population immotile (Table 1). The AuNPs 

(10–15 nm) failed to produce any significant antifilarial effect at 

the identical concentrations. However, staurosporine (0.5 µM) 

as a positive control induced complete loss in Mf motility. 

Table 1 Brugia malayi microfilariae were incubated with silver 
nanoparticles at varying concentrations

Concentration  
of AgNPs (μM)

Percentage loss  
in Mf motility

 4.6 50.0 ± 2.63
 9.2 76.5 ± 0.88
13.8   85 ± 1.17
18.4   89 ± 0
23   92 ± 0.58
27.6   94 ± 0.58
32.2   98 ± 0
36.8 97.5 ± 0.29
41.4   99 ± 0
50.6  100 ± 0

Notes: The percentage loss in the motility of microfilarial forms was recorded 
after 48 hours. Each experiment was carried out in triplicate and the results were 
presented as mean ± standard error of the mean.
Abbreviations: AgNPs, silver nanoparticles; Mf, microfilarial forms.
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When evaluated for the extent of cytotoxicity by trypan blue 

exclusion test, AgNPs at 101.2 µM elicited 50% lethality.

The inhibition of PARP activity is a valid measure for the 

assessment of cellular apoptosis.24 During apoptosis, PARP 

is cleaved by caspase 3 with an ensuing reduction in PARP 

enzyme activity, which thus prevents apoptotic cells from 

repairing their own DNA.25 PARP activity in Mf exposed 

to nanosilver (50 µM), nanogold (50 µM), or staurosporine 

(0.5 µM) was then studied. Both AgNPs and staurosporine 

induced nearly 70% attenuation in PARP enzymatic activity, 

whereas only 25% loss in activity was observed in the pres-

ence of AuNPs (Table 2), thus consistent with the significant 

microfilaricidal effect of nanoscale silver.

The interaction between microfilariae and nanosilver was 

further investigated with EB and AO differential staining.22 

AO permeates into healthy live cells to stain the nuclear mate-

rial green, whereas cellular access of EB is restricted, unless 

there is membrane damage. Mf treated with AgNPs (50 µM) 

and staurosporine (0.5 µM) were stained orange-yellow with 

EB (Figure 2B and C), which reflected loss in surface mem-

brane integrity. This contrasted with the profile of control 

parasites as well as that of Mf exposed to AuNPs (50 µM), 

which were stained green with AO (Figure 2A and D).

Nanosilver-induced ultrastructural changes in microfilariae 

were subsequently investigated by electron microscopy. 

Scanning electron microscopy images reflected marked loss 

in microfilarial sheath in parasites treated either with stauro-

sporine (0.5 µM) or AgNPs (50 µM), whereas RPMI-treated 

control microfilariae or parasites exposed to AuNPs (50 µM) 

exhibited clear undamaged translucent sheaths (Figure 3).

Transmission electron microscopy images of ultrathin 

sections of microfilariae, pretreated either with staurosporine 

or AgNPs, revealed multiple large, round vacuoles inside 

cells (Figure 4). On the contrary, vacuoles were scanty in 

parasites treated with AuNPs and absent in RPMI-treated con-

trol  parasites, which possessed thick homogeneous  cuticles 

and intact cell organelles without vacuoles. The presence of 

 vacuoles in ultrastructural sections of staurosporine-treated 

as well as AgNP-treated microfilariae further confirmed the 

apoptotic rationale in the pharmacodynamics of AgNPs. It may 

be noted that, conventional mechanisms for the study of apop-

tosis such as terminal deoxynucleotidyl  transferase-mediated 

deoxyuridine triphosphate nick end labeling assay and DNA 

fragmentation are not technically viable in a parasite  model.17 

Taken together, the above findings were consistent with 

apoptotic changes induced in microfilariae in the presence of 

nanosilver similar to that elicited by staurosporine. Nanogold 

of comparable size and concentration, on the other hand, had 

no adverse effect on parasites.

Figure 2 Ethidium bromide/acridine orange differential staining of microfilarial forms 
for the detection of apoptosis. Untreated (A) and gold nanoparticles preincubated 
(D) nuclei showed green staining due to acridine orange permeation, while organisms 
treated with silver nanoparticles (B) and staurosporine (C) appeared orange-yellow 
due to ethidium bromide, suggesting loss of integrity of surface membrane of the 
parasite shown.
Note: Data are representative of three different experiments.

Table 2 Percentage inhibition in poly(adenosine  diphosphate-
ribose) polymerase activity in the microfilariae treated with 
different reagents as indicated compared with control (Roswell 
Park Memorial Institute medium only)

Reagents Percentage inhibition  
in PARP activity  
(mean ± SEM)

AgNPs (50 µM) 71.62 ± 3.23
AuNPs (50 µM) 25.88 ± 1.09
Staurosporine (0.5 µM) 67.82 ± 4.13

Abbreviations: AgNPs, silver nanoparticles; AuNPs, gold nanoparticles; PARP, 
poly(adenosine diphosphate-ribose) polymerase; SEM, standard error of the mean.

Figure 3 Scanning electron micrographs of (A) untreated control parasite 
in Roswell Park Memorial Institute medium; (B) microfilariae treated with 
staurosporine (0.5 µM); (C) microfilariae treated with silver nanoparticles (50 µM), 
and (D) microfilariae treated with gold nanoparticles (50 µM).
Note: Data are representative of three different experiments.
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DEC has been shown to induce apoptosis in the microfi-

lariae of W. bancrofti,17 though the drug is not known to be 

filaricidal in vitro.26 Thus, apoptosis induction in vitro by 

DEC may not be sufficient to kill the parasite, which could 

couple with the innate inflammatory response of the host to 

elicit effective antifilarial activity in vivo. In support of this, 

the cuticles of adult and microfilarial B. malayi were found 

to be resistant to hydrogen peroxide, a strong oxidant as 

well as apoptosis-inducing agent, which is attributable to the 

presence of α-tocopherol in the lipid fraction of the parasite 

surface.27 Interestingly, DEC in combination with hydrogen 

peroxide was found to have marked synergism against filarial 

parasites.28 The above facts underpinned the relative inef-

fectiveness of DEC as the sole filaricidal agent and prompts 

researchers to strategize combinations with apoptosis induc-

ers as a novel lead for antifilarial therapeutics.

In an earlier report, the enhanced antibacterial potency 

of AgNPs was analyzed.11 Commendable efforts have been 

made to explore the underlying molecular mechanism of the 

antimicrobial activity of silver.29 Dissolved silver ions could 

be responsible for some of the biological actions of AgNPs 

against microorganisms30,31 through their interaction with and 

inhibition of the thiol groups of vital enzymes.29,32 It has been 

recently demonstrated that the rate of ionization of silver from 

nanoparticles is significantly affected by the presence of salts 

and biomolecules in the suspension medium.33 Biological 

media contain large numbers of interfering molecules in 

abundance, which can thus influence the release of silver 

ions. It is unlikely that silver ions will rise to a significant 

level under the present experimental conditions, as reducing 

agents like glucose present in RPMI would keep these ions 

in the reduced state, and high concentration of chloride and 

phosphate ions in the medium would generate insoluble salts 

of silver (eg, silver chloride and silver phosphate). Besides 

this, the presence of citric acid during the process of AgNP 

synthesis would result in surface coating of the nanoparticles 

with citrate ions which would further limit the release 

of silver ions, as reported recently.33 Thus, the observed 

antimicrofilarial activity reported in this study is most likely 

attributable to AgNPs per se and not to silver ions.

Conclusion
The main embargo on the current drug DEC is its empirical 

use without rationale. DEC-based mass drug administra-

tion policy demands longer durations of therapy, which 

may lack patient compliance and thus lead to frequent 

failure.34 AgNPs, on the other hand, are capable of inducing 

apoptosis in mammalian cells.14–16 The effective microfila-

ricidal  activity of AgNPs at relatively low concentration as 

reported in this study, with evidence of apoptotic induction 

in microfilariae, can project nanosilver as a potential drug 

adjuvant against lymphatic filariasis. Unlike DEC, which 

is effective against microfilariae only in vivo and not in 

vitro,35 nanosilver promises greater therapeutic effective-

ness. Remarkably, a recent report has demonstrated the 

therapeutic potential of AgNPs against leishmaniasis, 

another parasitic disease caused by Leishmania tropica.36 

However, the antiparasitic mechanism elucidated in this 

study was oxidative attack by AgNPs, which was further 

potentiated by the concomitant ultraviolet exposure. This 

mechanism is hardly of therapeutic relevance in the pres-

ent study as filarial parasites are known to be endowed 

with robust antioxidant defenses. On the contrary, based 

on evidence presented in the present study, apoptosis 

is proposed as the mechanistic basis of the antifilarial 

activity of nanosilver. Interestingly, there is a subtle link 

reported between oxidative stress and apoptosis induction.37 

Filarial parasites are lymphatic system-specific organ-

isms. Given the wide distribution attainable by AgNPs in 

tissues including lymphatics,38 administered nanosilver is 

expected to achieve a desired local antifilarial therapeutic 

concentration in the infected population. Nanosilver may 

act synergistically with DEC and thus may be effective 

either individually or as an adjunct (at lower individual 

doses) to this standard drug, after critical evaluation of 

safety parameters. Although there have been concerns 

regarding the toxicity of nanoparticles in general,39 and 

Figure 4 Transmission electron micrographs through sections of (A) untreated 
control parasite in Roswell Park Memorial Institute medium; (B) microfilariae treated 
with staurosporine (0.5 µM); (C) microfilariae treated with silver nanoparticles 
(50 µM); and (D) microfilariae treated with gold nanoparticles (50 µM).
Notes: Arrows point to the vacuoles; data are representative of three different 
experiments.
Abbreviation: V, vacuoles.
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silver in particular,16,40 nanosilver might be considered to  

have a safe therapeutic window. The 50% lethal dose of 

nanosilver (100 µM), which is double the complete inhibi-

tory concentration value (50 µM) as reported in the present 

study, supports this contention. The report on Leishmania 

parasites has demonstrated the synergism between nanosil-

ver and ultraviolet exposure in their antiparasitic effect.36 

This study did not find any serious toxicity concern with 

silver. Thus, it can be inferred that AgNPs may be used as an 

adjuvant to DEC to potentiate synergistic apoptotic impact, 

so that the dose requirement of nanosilver may be further 

scaled down. To summarize, the present report provides 

the first ever conclusive proof in support of apoptosis as a 

novel stratagem in antifilarial drug designing and nanosilver 

as a valid lead in the research on antifilarial therapeutics.
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