AAAS.ORG | FEEDBACK | HELP | LIBRARIANS

Science Translational Medicine

Prev | Table of Contents | Next

ADVANCED

Sci TM Home Current Issue Rapid Publication Issue Archive Multimedia Sci TM Collections My Sci TM About Sci TM

Home > Science Journals > Science Translational Medicine Home > 19 June 2013 > Morones-Ramirez et al., 5:(190): 190ra81

Science Translational Medicine

stm.sciencemag.org *Sci Transl Med* 19 June 2013: Vol. 5, Issue 190, p. 190ra81 Sci. Transl. Med. DOI: 10.1126/scitranslmed.3006276

RESEARCH ARTICLE

MICROBIOLOGY

Silver Enhances Antibiotic Activity Against Gram-Negative Bacteria

Jose Ruben Morones-Ramirez^{1,2,*,†}, Jonathan A. Winkler^{1,3,*}, Catherine S. Spina^{2,4}

and James J. Collins^{1,2,3,4,‡}

Author Affiliations

Author Notes

, ↓[‡]Corresponding author. E-mail: jcollins@bu.edu

Abstract

A declining pipeline of clinically useful antibiotics has made it imperative to develop more effective antimicrobial therapies, particularly against difficult-to-treat Gram-negative pathogens. Silver has been used as an antimicrobial since antiquity, yet its mechanism of action remains unclear. We show that silver disrupts multiple bacterial cellular processes, including disulfide bond formation, metabolism, and iron homeostasis. These changes lead to increased production of reactive oxygen species and increased membrane permeability of Gram-negative bacteria that can potentiate the activity of a broad range of antibiotics against Gram-negative bacteria in different metabolic states, as well as restore antibiotic susceptibility to a resistant bacterial strain. We show both in vitro and in a mouse model of urinary tract infection that the ability of silver to induce oxidative stress can be harnessed to potentiate antibiotic activity. Additionally, we demonstrate in vitro and in two different mouse models of peritonitis that silver sensitizes Gram-negative bacteria to the Gram-positive-specific antibiotic vancomycin, thereby expanding the antibacterial spectrum of this drug. Finally, we used silver and antibiotic combinations in vitro to eradicate bacterial persister cells, and show both in vitro and in a mouse biofilm infection model that silver can enhance antibacterial action against bacteria that produce biofilms. This work shows that silver can be used to enhance the action of existing antibiotics against Gram-negative bacteria, thus strengthening the antibiotic arsenal for fighting bacterial infections.

Copyright © 2013, American Association for the Advancement of Science

Citation: J. R. Morones-Ramirez, J. A. Winkler, C. S. Spina, J. J. Collins, Silver Enhances Antibiotic Activity Against Gram-Negative Bacteria. *Sci. Transl. Med.* **5**, 190ra81 (2013).

Read the Full Text

The editors suggest the following Related Resources on Science sites Back to Top

In

RESEARCH ARTICLE:

ANTIBIOTICS

Bactericidal Antibiotics Induce Mitochondrial Dysfunction and Oxidative Damage in Mammalian Cells

Sameer Kalghatgi, Catherine S. Spina, James C. Costello, Marc Liesa, J. Ruben Morones-Ramirez, Shimyn Slomovic, Anthony Molina, Orian S. Shirihai, and James J. Collins

Sci Transl Med 3 July 2013 5:192ra85

Editor's Summary Abstract Full Text Full Text (PDF) Supplementary Materials

REPORT:

Fe-S Cluster Biosynthesis Controls Uptake of Aminoglycosides in a ROS-Less Death Pathway

Benjamin Ezraty, Alexandra Vergnes, Manuel Banzhaf, Yohann Duverger, Allison Huguenot, Ana Rita Brochado, Shu-Yi Su, Leon Espinosa, Laurent Loiseau, Béatrice Py, Athanasios Typas, and Frédéric Barras

Science 28 June 2013 340:1583-1587

Editor's Summary Abstract Full Text Full Text (PDF) Supplementary Materials